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EVALUATION

A significant cost associated with the design and development of helical

traveling wave tubes has been incurred by "cut and try" techniques. Various

« ———

analytic methods have been developed to attempt to adequately model a slow

wave structure,however, these at best have been first order approximations. |

The variational technique described herein and implemented on the RADC GCOS

e i o A o g

. 3

computer is a large deviation from present "lumped" models. Although not

completely refined, the variational technique promises to deliver an order

of magnitude improvement in helical structure modeling without resorting to

"correction factord'that are structural type dependent. Therefore, in tube
design, it may be possible using the variational computer software to

completely design a workable structure in one or two hardware iterations.

J%gEP J. Pﬁ

Project Engineer
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SECTION I

INTRODUCTION

In November 1979,Harris SAI, Inc., Ann Arbor, Michigan
began the development of computer programs for variational
analysis of helical slow-wave structures for O-type

.traveling-wave tubes. The basic objective was to develop

more accurate computer models than were previously available
for the computation of dispersion, impedance and attenuation
and thereby minimize the cold testing needed for development
of new TWT designs.

This Final Technical Report describes the progress in
the development and application of the variational technique
achieved under the contract. Section II describes the
objectives of this research effort. Section III presents
the methodology of the techniques developed. Numerical
results for the sheath helix are summarized in Section IV.
The analysis on an homogeneous dielectric support is detailed
in Section V. Work done on the spiral dielectric structure
and comparisons between simulation and cold test data are
found in Section VI. The consequences of Bevensee's choice
of trial fields is examined in Section VII, and alternate
trial fields are proposed for future work in Section VIII.
Conclusions are presented in Section IX.

This effort was supported by Rome Air Dévelopment Center,
Griffiss AFB, New York under Contract No. F30602-79-C-0013.
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SECTION II

RESEARCH OBJECTIVES

In helical traveling-wave tubes, the slow-wave circuit
is commonly supported inside a vacuum envelope by means of
dielectric rods, wedges, or more recently by a ceramic
coating deposited upon the helical tape. These geometries
are illustrated in Figures 1 through 4. It is known from
experiments that these supports increase the dispersion and
lower the interaction impedance. Also, in some designs
longitudinﬁl vanes or other configurations are inserted
inside a conducting shield to reduce dispersion and taper
phase velocity.

In a typical tube development, the slow wave structure
is designed using approximate theories and then is cold
tested experimentally because no accurate theoretical predic-
tions of dispersion and impedance have been available. This
can be attributed to the necessary approximations used in
the popular non-variational, analytic techniques. For example,
the conducting tapehelix is often modeled as a spiralling

conducting sheathl'2 or else a particular current distribution

is assumed over the metal surface.3’4 Moreover, existing
theories of dielectric loading have treated the dielectric
supports, no matter what their shape, as filling the entire
region between the helix and shield.z's Usually the effective
dielectric constant either is adjusted phenomologically or else
is scaled by the proportion of volumes occupied by the support.
A more rigorous treatment states the boundary condition in

full but uses approximate radial propagation constants in the
dielectric and vacuum to obtain analytic results.6 Vane

loading has been treated by an equivalent transmission-line
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Figure 1. The tape helix.
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Figure 2. Two methods of supporting a helix.
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) method,~ but the theory assumes only a single space narmonic.

During this contract, Harris SAI, Inc. began adapting the
variational technique of Bevensee7 to treat various dielectric-
supported slow-wave structures. Uiilike other techniques, the
actual geometry and dielectric of the structures is used. The
main objectives of the work are to (1) develop an accurate
computational analysis of supported, helix-type structures
and (2) verify the theory using existing cold-test data.

The structures originally selected for study under this
contract were sheath helices, and radially thin tape helices

supported in metal shields by a homogeneous dielectric region,
a spiralling dielectric, rods, or wedges which may be
asymetrically placed. Of these configurations, the analyses
for the sheath helix and tape helices supported by homogeneous
and spiral dielectric were fully developed. The latter case
had its true, radial tape thickness modeled so that all
structural dimensions were employed in the analysis.

The analysis of the sheath helix was included so that the
computer program could be verified. The homogeneous support
structure is a typical approximation used in analyzing compli-
cated devices. Comparisons between the variational analysis '
and Paik theory are presented because the Paik theory also
makes this approximation of an homogeneous external region.

The particular computer program referenced in this report as
Paik is based upon theory developed by Watkins,2 Ash,8 and
Paik.? It is part of the Harris SAI's TWA small-signal gtoup
of programs9 for which it estimates cold test data. The

. results from the spiral dielectric support were compared with
[ both the Paik theory and experimental cold test data.

e, o
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SECTION III

! VARIATIONAL TECHNIQUE

The objective of the variational technique is to combine

; trial cylindrical electric and magnetic fields in a manner
that appropriately satisfies all boundary conditions. A
variational formula given by Bevensee’ is used because it allows

the derivation of the dispersion relation prior to the

calculation of trial field coefficients. 1In this section, the
principal assumptions of the model are presented. Trial fields
and boundary conditions are developed, and Bevensee's variational
expression is introduced. This formula is shown to be actually
a specific application of the reaction concept developed by
Rumsey10 which uses Bevensee's trial fields and boundary

s conditions. From the reaction concept, alternate variational

' forms are developed, symmetric properties of these expressions
are shown, and convergence is examined.

A. Assumptions

In the computational analyses the slow~wave structure is
modeled as follows:

(1) The slow-~wave structure is assumed to be infinite
in length with fixed period. Thus, end effects are neglected
and a tapered helix is treated as if its local pitch is constant.

(2) The effect of skin loss is sufficiently small that
the fields within the metal are negligible and the surface
boundary conditions for a perfectly conducting surface apply.
This makes the fields and propagation constants incependent of
the conductivity.

(3) The metal and diclectric surfaces are perfectly
smooth and unperturbed throughout the structure.




(4) The dielectric material is uniform, isotropic and
lossless.

(5) The magnetic permeability has the free space value,
denoted Mg+

(6) Perfect contact exists at any dielectric-metal
interface.

B. Notation

All electric and magnetic fields have the exp(jwt) time
convention where w = 2nx frequency. References will be made

et

to particular dimensions of the slow-wave structure. Figures
5 and 6 illustrate the various volumes and surfaces. The
following definitions are convenient.

Divide the single period of the slow wave structure into 1
three volume regions as follows: ]

Vi free space within the helix; ]
v, free space outside the helix; ]
vd dielectric volume.

Define the surfaces of the region interfaces as follows: ;

Wi inner wire surface; ?

W, outer wire surface bounded by free space; 2

Wd outer wire surface bounded by dielectric material;

Dy interface of regions Vi and v, at helix radius
(interior and exterior free space regionsj;

Dd interface of regions Vi and Vd at helix radius E
(interior free space and dielectric regions);

A transverse dielectric boundary (extending radially

outwards from the helix radius).




Dielectric

Helix

Figure 5.

a. Longitudinal section

Shield Dielectric

axis

b. Transverse section

Wedge dielectric support showing volume
and surface notation.
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Let the helix have pitch angle ¢ and radius a. Let the shield
have radius ag.

Cylindrical coordinates (r, 6, 2) are used throughout
this report. The following unit vectors will be used:

A
r outward normal;

~

n normal into helical surface, which is + r for a thin

tape helix;

t normal to helix surface and £ or (0, =-sin y, cos )
in cylindrical coordinates;
m into the dielectric and normal to the surface.

C. Boundary Conditions and Trial Fields

Currently, two types of slow-wave structures have been
successfully analyzed. Each has a helically-wrapped conducting
tape suﬁported within a shield. The support of each structure
is periodic. One support is just an isotropic homogeneous
dielectric placed between the tape and the shield (see Figure
4a). The second is a composite metal ceramic structure, meaning
that the isotropic dielectric has been deposited on top of
the tape giving a spiralling dielectric support (see Figure 4b).

The correct fields must satisfy Maxwell's equations, have
periodic properties, and satisfy the correct boundary conditions
at all surfaces.

The variational formulas produce best results when the
trial solutions are close to the correct solution. Bevensee
expresses his trial functions in cyllndrlcal geometry. If the
longitudinal axis of a tube is in the z direction the periodicity
¢f the true field implies that the propagating field must be
a sum of cylindrical harmonics with phase

12




® = -ByZ + n(o - ‘2)—" 2) (1)

where p is the period of the wrapping along Z. If the radial
dependence is denoted ﬁnm(r) for each harmonic, the complete
field is '

->

- m - 1
F = $S$R_(r) ¥ (2)

. WAL B WS ¢ L 7. g AN o AE L i WD -

Equation 1 makes the phase such that the field is invariant )
parallel to the helical tape except for propagation exp(-jBOZ). A
This Bo is the fundamental propagation constant and one of the

main quantities that the variational technique calculates.

Bevensee forced each term of Equation 2 to satisfy Maxwell's A
equations. Then n=m and each component of in is a linear !
combination of modified Bessel functions of order n denoted 1
In(ynr), Kn(ynr). Here ]

Yo = Bi - k? (3)

B = Bo + — n (4) 4

and k is the wave number of the space.

Although individually for each harmonic n, Bevensee's
trial fields have the correct phase and satisfy Maxwell's
equations, they do not satisfy boundary conditions. Bevensee

' tries to piece together a satisfactory sclution. First,he
partitions the structure into regions Vi’ vb, Vb defined earlier.
For each harmonic, n, the inner region, Vis has a TE and TM

set of fields written as an I-type Bessel function.

13
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Simultaneously, each outer region has TE and TM sets dependent
upon a linear combination of I and K-type Bessel functions

such that the boundary conditions at the shield are satisfied.
Physically, these combinations give for each n an exponentially
growing field for the inner region and an exponentially decaying
field in the outer region. By considering all harmonics n, it
is assumed that the boundary conditions at the helical tape,
trial region interfaces and dielectric-free space interfaces

can be satisfied through an optimal selection of TE and TM
coefficients.

D. Bevensee's Variational Formula

The variational equation presented in this section applies
for a wire or tape helix of arbitrary cross section wound on
an arbitrary cylindrical surface. It is based on the work of
Bevensee? but includes also the third, dielectric, region
outside the helix.

'The electric and magnetic fields for all harmonics n
in Equation 1 within each region are defined as follows:

in region Vi3 e and ﬁ;

in region Vo: ﬁ and ﬁ;

in region Vj: £ and 7.

The longitudinal components of the TE or TM field in each
region are

h, = elf0Z i Cip Ilypme®™ (sa)

e = 30PN oo 1 (v ;eI . (S5b)

H, = e3Bo? jz C3p Sp(Yyr) eIn¥ ' (6a)
14
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E = eJ%0 z C4n Rn(an)eJ v ‘ (6b) A

2
- yBO2Z " 3 ‘
s = o0 z Csn Tn(an)ean ' (7a)
- iBo2 : j
H, = e7F0 chn U, (v, ) e??V ' (7b)
_ 21
where ¢ = 9*'7; Z ' (8) |
Ya = Ba- ko (9) ;
Yn = Bh - kogp (10) |
i
K _(va) 4
R = K (yr) - =——2-1 (yr) i
n n n ’ 11 b
In(YaS) ( ) 1
K (ya,) 1
S, = K (yr) - =1 (yr) (12)
In(Yas) ]4
T = K (9r) - K_(9a_)/I_(fa.) I_({r) (13)
n - n n S n S n ’
U, = K, (r) - K (Ra,)/1/(Ra,) I (fr) . (14)

Provided that the interface exists in the particular helix
structure considered, boundary conditions on the tangential
field components at each volume interface become:

(@ -8) xr = 0 or surface Dy (15)
- -> A
(R-H xr = 0 |, (16)
exT = 0on W, (17)
Exr = 0on W, (18)
15 i




Exr = 0on Wy (19)
!
f (e - E) X r = 0 on surface Dy R (20)
- -~
(h - E) x r = 0-on surface Dy ’ (21)
(E -8 xt = 0onsurface A , (22)
(F-H xt = 0on surfacea . (23)

PR

Bevensee has devised a formula dependent upon the boundary
condition mismatch:

&

ren o s~

i . .
: 0 = ‘f’i €*+(V x h,_ - jweye,)av - ‘f, B*e(V x &, + juugh,)av
3 i
| 5 BV x B - juegEav - 5 Hre(V x B, + jungfav
! v, v
(o] (o]
. - . vl
+ 7 Brewx A - quegtav - s Fre(vx E 4 juugh,)av
-V A\
a - Va
+ J e, x h*enas +J B4 x i*ends + J E, x fix-has
Wi Wo Wd
+37 @reBn x B, -A)eras+is @ -Ex@relneras
D D
(o) (o]
+2s @+t x @, -RpTas+ s @ - F)x@Er+Rr) L as
D D
a a :
+ %}{ (EB* + T*) x (f, - A,)-mds
+ L@ -t x (Hr+fnemas L (20)
2 A

16




The "+" fields i Equation 24 are the correct solution
propagating in the z direction, while the "-" fields are a

second set of fields propagating in the -z direction. Because

the trial fields satisfy Maxwell's equations, the volume integrals
are identically zero when the dielectric constant equals that of
the trial fields throughout the trial field region.

This expression is variational in the sense that any
arbitrary perturbation in the "-" fields for the correct "+"
fields still yields a zero in expression (24) and vice versa.

This characteristic is used to derive the field coefficients.
Assuming that the field solution can be expressed as a sum of

slow wave cylindrical harmonics within each trial region, Equation
24 becomes a quadratic form in terms of the "+" and "-" field
coefficients

0 = B*M(so)c , (25)

where C is a column vector of all true coefficients in Equations

5 through - 10 and B is the column vector of the "-" field
coefficients. The t denotes conjugate transpose. The square
matrix M(Bo) depends upon Bo, the geometry of the structure, and
the number of harmonics combined. Because arbitrary perturbations
in B can be made from the correct fields and the result of 0

still remains on the left hand side of 25, the determinant of
M(Bo) must be 0. Bevensee's technique proceeds in two steps:

(1) Search for the Bo which makes det[?(Boj =0

(2) Find the eigenvector corresponding to the zero
eigenvalue and interpret this as the set of coefficients.

Bevensee justifies his formula as an application of an eigen-
value problem developed by Morse and H. Feshbach.11 In this

17
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derivation he has used trial fields which satisfy boundary
conditions by means of smoothing functions within a transition
region. As the transition region becomes smaller, the eigenvalue
estimate of w(Bo) becomes Bevensee's formula. This shows that
the Bo found by Bevensee's solution is such that N(Bo) is an
upper bound, which implies that Bo is either an upper bound or
lower bound depending upon the slope of the w-f dispersion
relation.

E. Reaction Method

The reaction method was developed by Rumsey in 1954.10

Virtually all variational expressions can be derived directly
by the application of the reaction concept. Harrington,ll in
particular, has developed variational formulas using the reaction
method for cavities and wave guides.12 Moreover, he has treated
problems of inhomogeneously-filled wave guides with trial

fields having discontinuities across a surface. These
discontinuities are not as severe as those needed by Bevensee
because his boundary value problem was with only one of EorH
and along a surface with one coordinate constant. Nevertheless,
the reaction method can easily incorporate the trial fields

of Bevensee. In this section, the reaction integral is first
presented. Bevensee's method is derived from the viewpoint

of reaction. In later sections, the reaction formulation will
be used in discussions of convergence of Bevensee's fbormula.
Modification of the variational expression will be made based

upon principles of the reaction method.
Denote the fields produced by sources a alone as Ea' ﬁa'
and the fields produced by sources b alone as ﬁb’ ﬁb' The

reaction of fields a on sources b is defined as

<g.§ = 0 @, ¢ 3 - fia. Mplav . (26)
v

18
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Reaction is closely linked to reciprocity, which in the above
notation becomes

@B = (& . (27)

For waveguide problems, it is important to use an adjoint
system to a, denoted a* consisting of fields EZ, -HJ produced
by sources M;, -J;. For homogenous regions, a* corresponds
to the field distribution traveling in the direction opposite
a along the longitudinal direction of the wave guide.

When systems a and b have the same longitudinal propagation
constant,the reaction of fields a* on source b becomes a surface
integral

. ﬁb as |, (28)

and reciprocity is expressed by

arp) = (pad (29)
a*py =<br.af . (30)

In variational analyses, reaction can be viewed as a
measure of equivalency.12 In fact, a source must have the
same reaction with all fields equivalent over its extent so
reaction is a necessary, though not sufficient, test for
equivalent fields. For the source-free modes sought by our
analysis of helical slow-wave devices, the correct fields, Ec
and ﬁc' are unsupported by currents away from the conducting
walls. As a consequence, if an arbitrary system a* has fields
which satisfy the correct boundary conditions at conducting

surfaces, the reaction of fields of a* on the currents of the

19
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exact system, which are only at the conducting walls, is zero:

erie) = Lty = 0 . (31)

Bevensee's formula can be recovered directly from Equation
31. Although the fields of system a satisfy the same boundary
conditions as the correct system, fields of a may be supported
by currents inside the wave guide. For Bevensee's trial fields,
compensating currents are added to make the fields continuous
at the free space trial region interfaces and to set the
tangential electric field to zero at the tape. Specifically,we
add currents

T - 5
Mn n x En (32)

to force the tangential field to zero on this conductor, where
n is the harmonic number and T denotes tape. Simultaneously,
currents

Mo = -m x (Ei - E.H , (33a)
and
3° =+ x (ﬁi - ﬁil) (33b)

are added to remove the discontinuity in electric or magnetic
fields at the other interfaces of trial functions regions (I)

and (II). Because Bevensee's trial functions are source-free
except at the interface of his trial function regions and because
the trial functions satisfy Maxwell's equations, the surface
integral of Equation 24 becomes a line interval at the interface
of these regions. The properties of Bevensee's formula follow
from postulating that the correct field is an exact sum of

20
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~trial fields. For the case of an external homogeneous dielectric

support, for example, the longitudinal waves are the infinite sum

E . . 2w
2l - "3BoZ EZ A (r)einle=p2) (34)

Hy

where the radial portion is proportional to a modified Bessel
function and ‘depends upon region:

-
s T e o ot 0  Jlirn, AT M St 4 e e et AP . St - [ ‘
v A
’
. e
R -

Cln In(an W %

r rtape

Cay In (v,r)

A (r) = 4 > - (35) 1
Ca Rn(an) . . 4
tape 1
Cqr Sn(Ypt) ]

\ J

oS

The series is truncated and the coefficients are collected into

one column vector denoted C. Equation 31 indicates that the i
reaction of the correct system with an approximate system is 3
always zero. If the approximate system a is taken as a second

collection of trial fields using coefficients B, the reaction

integral becomes the gquadratic form

B*M(so)c = 0 (36)

for any arbitrary coefficients in B. This implies that the
det[?(Bo)] is zero for the correct system of fields. Notice
that unlike Bevensee's argument a perturbation did not have

to be invoked in concluding that the determinent of M(Bo) is
zero. Bevensee needs a perturbation because he starts with the
self reaction <é*,§> . Our technique uses the reaction on the




field of a second system directly. In fact, in our formulation,
arbitrary perturbations of coefficients in B are just another
set of coefficients.,

F. Variational Nature of the Reaction Integqral

If the system b or a is not an exact sum of trial fields,
suppose we include a perturbation p in the systems a and b from
the correct system: b* = C* + epf, a = C + Ap; where ¢ and A
are small numbers. The reaction <b*,ab is then variational about
0. That is,

o*ay = et (37)

which is variational in the sense that

) é'ee’&

|
(=]

(38)

A=0
=0

and

o | o -
A=0
e=0
For Bevensee's solution to succeed, one does not depend
upon this variational property. Instead, € must be a small
number. Specifically,after truncation to N harmonic trial
fields, one assumes that the difference of the field with the
best selection of coefficients from the true fields is such that
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{a*.by = e a*,pp (40)

is very small. This concept will be discussed in greater
detail when convergence of Bevensee's method is discussed in
Section VII.

G. Symmetric Properties from Reaction

Bevensee's formula has been shown to be a quadratic
form given by Equation 25. Also,it was derived as a reaction
integral. Symmetric properties of the variational matrix
follow from reciprocity expressed as reaction integrals. 1In
particular, Equation 30 becomes the matrix equation

BfMc = -(ctmp)* . (41)

One concludes
M = =M . (42)

Also, the matrix M can be made purely imaginary by scaling all

TM field coefficients by e"'j"/4 and all TE coefficients by
e~3"/4  pecause M(B,) is a pure imaginary symmetric matrix,

all TE waves are in phase as are all T™™ fields. The TE and

TM modes are out of phase by 7 radians. In addition, symmetry
allows the matrix to be filled using only the upper triangular
elements. This is particulary useful when numerical integrations
are needed in the computation of elements.

23
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SECTION IV

COMPUTATIONAL RESULTS FOR THE VARIATIONAL ANALYSIS
OF A SHEATH HELIX

Current spiralling along an infinite cylinder in free
space is known as a sheath helix. It is a configuration for
which the analytic solution of the field distributions are

explicitly known.l

The correct fields are linear combinations
of those trial fields written earlier in Equations 5(III)

through 10(III).

In applying the variational technique to this problenm,
the propagation constant and trial field coefficients were
initially unknown. Each trial function harmonic, n, can form
an independent sheath mode. The variational matrix had
dimension 4 x 4. By finding the Bo corresponding to a singular
matrix, the correct dispersion relation was found. Figure 7
shows that the exact dispersion can be recovered for the n=0
mode. The exact relative magnitude of the coefficients also

was found as the eigenvector corresponding to the zero eigenvalue.

We were also able to recover correct solutions for higher
harmonics.

23
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SECTION V

VARIATIONAL ANALYSIS OF A HELICAL TAPE
SUPPORTED BY AN HOMOGENEOUS DIELECTRIC REGION

This case differs from the sheath-helix analysis in that
the current is confined to a helically wrapped tape. Unlike
the sheath harmonics, the internal and external trial fields
are continuous over part of their interface as shown in Figure
4a.

At first four independent trial fields per angular harmonic
were combined in the variational technique. Unlike the sheath
case, the angular harmonics do not decouple. Computational
results were compared to those from a program based upon Paik's
analysis5 because it assumes an homogéneous external dielectric.
As will be shown, results for some combinations of harmonics
were excellent. However, spurious solutionsappear with bad impe-
dances. Two techniques were developed to remove spurious solu-

tions. One made a modification to the variational expression. A
second method added continuity constraints which reduced’ the
number ¢f independent trial field coefficients. Both approaches

are presented in this section.

A. Four Coefficients Per Angular Harmonic

When the variational technique was applied to the homogeneous
support structure, two trial field regions were used. A TE and
TM mode for each harmonic were placed in the trial region inside
the tape radius and in the region covering the dielectric.
Consequently, four trial fields are used for each angular
harmonic. For N harmonics combined in the analysis there are
4N unknown coefficients and the variational matrix has
dimension 4N x 4N.
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|
3 First, problems with an external free space region were
% examined. The geometric configurations of the structures
L ; examined are the same as those fou?? in the Northrop final : |
report on the metal ceramic helix, except that a dielectric
. or vacuum is placed in the external region. The pertinent 2
: dimensions are found in Appendix A. Helix No. 2 was selected
because the approximations made in the Paik analysis are best
for a small gap-to-pitch ratio.

! For the case of a single trial-field harmonic, (n=0),
i no solutlon to the dispersion relation was found. For
‘ the case of three harmonics (0,-1,1), two solutions close to :

‘ the expected dispersion value from the Paik theory were found. ,
| The higher Bo of these two yielded the best impedance. Results j
! for this Bo from 10 to 20 GHz are compared to Paik in Figures

1 8 and 9. The agreement in impedance is excellent. The values

of phase velocity using Paik are higher than those from the
variational analysis, but they are parallel. 1

As the number of trial field harmonics is increased, the

solution does not necessarily improve. When three harmonics

were combined, an examination of the field values at the inter-
face of the trial regions showed the electric field to be in

phase across the interface, while the magnetic field was =

radians out of phase. This is a proper configuration on the
conducting tape, but an incorrect state for the free-space

portion of the interface. As the number of trial fields increased,
the magnetic field remained discontinuous along the free-space

portion of the interface.

The impedance and dispersion for Helix No. 4 at 6 GHz
for various combinations of trial fields are shown in Table 1.
Note that multiple solutions again can be found. The results
do not appear to converge. As will be shown, the variational

27
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] TABLE 1
, PHASE VELOCITY AND IMPEDANCE FOR HELIX NO. 4

WITHOUT DIELECTRIC AT 6 GHz USING FOUR TRIAL FIELDS PERHARMONIC

Number of Trial Phase Velocity/ Impedance
Field Harmonics Speed of Light at Tape
3 .239 .46
3 .192 2.24
5 .258 39.7
7 .202 44.1
9 .228 81.3
9 .233 72.6
11 .438 72
13 . 259 38
19 .231 123.1
Paik . 245 88.3
30
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technique had to be modified before convergent results with
correct values could be obtained.

B. Spurious Propagation Constants

In variational analysis, the measure of an equivalent
field is an identical reaction on the currents. Uniqueness
is not guaranteed and, therefore, multiple solutions are

possible.

The existence of multiple propagation constants makes the
automatic choice of the best solution difficult. 1In searching
for the best solution one is forced to consider the degree
to which specific proper boundary conditions have been met.

Multiple solutions do not disappear as more harmonics
are added to the trial fields. It is also possible to
have but one solution with a particular combination of trial

field modes and none with another.

In an attempt to remove difficulties associated with
multiple solutions, we have used constraints or added additional
variational terms. These methods are described in the
following sections. The conventions used in the remainder cf
this report is that the lowest 80 is the best solution.
Convergence of impedance and phase velocity are examined with
this convention. In theory, if all spurious solutions could
be removed, the higher harmonics of the slow wave structure could

also be predicted.

C. Use of Reaction Method to Generate a New Convergent

Variational Expression

The reaction method provides a means for devising additional
variational expressions by manipulating trial-field currents.
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As noted previously, the electric and magnetic currents are
added to the system so that the boundary conditions of the

H
i
% correct fields are met. These are
{

-> A <

; J, = mx (ﬁI - HII) (1)
and .

M, =-mx E - E ) . (2)

where n refers to the trial field harmonic and m is a normal

at the interface of trial region I and II. Figure 10 depicts
adding a current on one side of the interface and cancelling

it on the other so that the boundary conditions are undisturbed.
Taking the currents as Jn and ﬁn' an additional term arises

in the variational expression. This is a method for weighing
some currents more than others.

n . o A - " ——

——— et £ g IO s ¥ s

Convergence of impedance and phase velocity have been
examined, using the revised formula. The lowest Bo was taken

as the solution. The spurious Bo's were removed. Figures 11
through 13 show the improvement we found at 10 GHz in the
convergence of the electric field as the number of modes in
the trial fields are increased. Tangential H-field at the
interface of trial field regions remains 180° out of phase.
Table 2 shows convergence of the impedance as the number

of modes increases.

D. Continuity Constraints at the Trial Field Interface

Because the tape is radially thin, both the correct outer
and inner tangential electric fields are zero at the same
interface of the trial field regions. Since continuity already
exists on the free-gpace interface, this continuity exists for
all angles at the interface surface.
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across the interface of trial
field regions.

Figure 10. Cancelling additional currents L
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TABLE 2

T

TRENDS USING NEW VARIATIONAL EXPRESSION ON COMPOSITE

HELIX NO. 2 WITHOUT DIELECTRIC

New Variational Expression at 10 GHz:

+1
No. Harmonics vp/ Cx 10
5 1.09
7 1.13
11 1.13
13 1.12
Paik Theory:
7 1.17

Vb - phase velocity

C - speed of light

2, ()

183

172
717
97.1

88.4
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The angular dependence of the trial fields is contained
in the phase by Equation 2. It can be concluded that the
continuity constraint in tangential electric field should be
satisfied by each harmonic, n, of the trial fields because
the exponentials, ejne are orthoginal over 2n. A careful
examination of the spurious solutions shows that this constraint
is not satisfied for each n. Consequently, some false Bo's

can be removed by explicitly enforcing this constraint.

Simultaneously, the number of independent field coefficients
per trial field harmonic is reduced from four to two. .
Numerically, this has the advantage of reducing the size of
the variational matrix from 4N x 4N to 2N x 2N, where N is
the total number of trial field harmonics. Moreover, because
tangential electric fields are constrained to be equal, the
extra variational terms added in the last section by the
modified variational expression vanish. The problem is
simpler because only two types of mismatch in the boundary
condition remain: (1) the deviation from0 of the tangential
electric field at the tape, and (2) a noncontinuous magnetic
field at the free-space interface.

E. Use of Constraints to Obtain Convergent Results for
Impedance and Dispersion

By constraining the tangential electric field, the fields
and dispersion converge as the number of trial-field harmonics
increases. In addition, the true propagation constant is close
to the lowest solution of @et M(Bo)] = 0. For Helix No. 2,
with or without dielectric in the external region, results are
particularly close to those produced from the Paik ‘theory. Tables
3, 4, 5 and 6 show the behavior of impedance and dispersion

* as the number of harmonics increases. In Figures 14 through 17
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HELIX NO.

TABLE 3

2 WITHOUT DIELECTRIC GAP/PITCH = .35
No. of ,
Harmonics 10 GHz 15 GHz 20 GHz
V/pC z(R) vp/C z, () vp/C z, (@)
3 .108 93.6 .105 37.8 .104 20.0
11 .112 73.7 .107 35.7 kR aladed
17 .112 84.7 .109 47.2 .108 33.1
23 .113 88.9 .105 53.6 .110 33.3
Paik
(7 modes) 1 .117 88.4 .115 53.2 .113 32.9
ka .23 .34 .46
Vp phase velocity of 0-order harmonic
z impedance of 0-order harmonic
C speed of light
*hk no singular matrix found
a tape radius

LT IS Ao
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TABLE 4

HELIX NO. 2 WITH DIELECTRIC GAP/PITCH = .35
' No. of
i Harmonics 10 GHz 0 15 GHz Q 20 GHz 0
V VP/C z (82) VP/C zZy () VP/C 2y ()
. i Variational
: ! 3 .0605 28 *hk *kk *hk *hk
5 17 .0618 32 .0619  23.45 .0619  17.62
¥
i 23 .0623 36 .0625 27.5 .0626 20.62
| :
|
Paik
(7 modes) .0639 40.3 .0641 29.8 .0645 18.9
b
F
Measured
by . 085 .09 9.5 .092 5.1
Northrop
Vp - phase velocity of O-order harmonic
Z - impedance of 0-order harmonic
C -~ speed of light
*hkk

no singular matrix found

NOTE: Both the variational analysis and Paik theory used an
homogenous dielectric which was the average dielectric
by volume in Northrop's spiral dielectric structure.
(eD = 4,72)
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TABLE 6

HELIX NO. 4 WITHOUT DIELECTRIC GAP/PITCH = .77

No. of
Harmonics 2 GHz 5 GHz 8 GHz
vp/C Z(Q) vp/C Z(Q) V,/C Z(Q)
17 . 250 68.7 .270 70.4 .255 60.0
2 .253 69.7 .250 66.3 .257 64.1
Paik
(7 modes) .236 100.9 . 245 91.4 .245 82.3
ka .062 .155 .245

D NN

phase velocity of 0-order harmonic
impedance of 0-order harmonic
speed of light

tape radius
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Figure 14. Comparison using 23 harmonics between'

impedances at the tape from variational
method and Paik theory applied to Helix
No. 2 without dielectric.
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_ a comparison between the Paik theory and the variational ¥
! analysis is made over an octave in frequency using Helix

No. 2. Results with and without an external dielectric are

shown using 23 trial field harmonics. Excellent agreement in

{ both impedance and dispersion is found. Table 3 shows there is
g improvement in the impedance and phase velocity as the number
of harmonics increases. 1In Table 4 some results at three
frequencies for Helix No. 2 with a homogeneous dielectric are
shown. At the few combinations examined, results improve as
more modes are combined. In Table 5, results for Helix No.

P

1 without dielectric at three frequencies are given. Phase
velocity is again similar to that calculated from Paik's theory.
Impedance is in good agreement with Paik's at the lowest

.

{
frequency, but it differs increasingly more at the higher :
1 ‘ frequencies. The Paik analysis used assumed a constant field '
in the gap region. As the gap to pitch ratio increases, this
approximation should yield poorer impedances. In Table 5 some
results for a large gap to pitch ratio are presented. By
increasing the number of harmonics from 17 to 27,6 impedance and
phase velocity do not change greatly. Impedances differ

greatly from Paik's.

Although the impedance and phase velocity are better
behaved, an examination of the boundary fields indigates that
the magnetic field has remained 1 radians out of phase across

the free-space interface even when large number of harmonics
are combined. In some cases there appears to be a larger
current at the free-space interface than on the metal tape. ?
The current on the tape usually peaks at the ends of the tape
as it should.

Lack of continuity of the Hefield free-sapce regions
is attrihuted to Bevensee's choice of trial fields, 1In

U
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Section VII and VIII, the need for additional trial fields is

shown in detail. Bevensee avoided using these partly because

they did not satisfy Maxwell's equation and thereby introduced
volume integrals. In spite of Bevensee's set of trial fields,
our results show that good convergent results can be attained

if one uses a large number of harmonics.

The computer program, denoted HELIX, using two independent
trial fields per angular harmonic, typically occupies about
90K of fast memory. Values of impedance, phase velocity,
field coefficients and attenuation are calculated over a
specified frequency range. CPU time grows exponentially
with the number of trial field harmonics. Whereas a case
at a single frequency using three harmonics typically consumes
4 seconds of CPU time, the same case analyzed with 23 modes
may take some 90 seconds.
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SECTION VI

VARIATIONAL ANALYSIS OF A SPIRAL DIELECTRIC SUPPORT

The metal-ceramic helix has a spiralling dielectric
support (Figure 4), fabricated by depositing the ceramic
on top of the helical tape. The great advantage of the
variational method is that the geometry of their dielectric
region is included in the variational expressions. The analyses
of the spiral dielectric, slow-wave structures involve two
types of models: (1) models with two trial field regions,
and (2) models with three trial field regions.

A. Two Trial Field Regions

When two trial field regions are used, there are four
trial fields per harmonic just as there were for the homogeneous
support. However, the spiral dielectric introduces a new radial
discontinuity in the external dielectric, in that the dielectric
constant abruptly changes across the radial interface between
free-space and ceramic (Figure 6).

The geometry of the support enters the variational formula
as a volume integral. Specifically for a set of trial functions
using dielectric constant ep, the first term of the variational
formula in Equation 25(III) becomes

= 3 - . *
L Y }(+ Jw(ep €p) ﬁ; ﬁ; avp
SPIRAL DIELECTRIC
+f+ jule, = € E, « E* avp (3)

SPRIAL FREE SPACE
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where €, is the trial fields' dielectric and ¢p is that of the
ceramic. Because the trial fields have a simple exponential
dependence upon coordinates and 0, this volume integral reduces
to an integration along the radius of the external region which
must be computed numerically.

First, continuity constraints were applied at the tape
radius so that only two independent coefficients per space
harmonic exist. There were g[l + rﬂ numerical integrations
needed in the analysis, where N is the total number of trial
field harmonics. Because the modified Bessel functions are
asymptotically exponential and the correct fields should decay
i in the external region, the computational time was Jdecreased
i by using an eight-point Gaussian quadrature integration scheme.
i Test cases with harmonic n=5, showed agreement between the
} Gaussian integration and more costly adaptive integration
‘ schemes through the fifth decimal place. By limiting the sampling
of the integrand to eight fixed points, Gaussian integration
schemes had the additional advantage of allowing components
of the field at the sampled radii to be computed only once and
stored. They werecombined into several integrands when needed.

This drastically reduced computational time in the numerical
integrations. ﬁ

L aars el

The two independent coefficients per trial field harmonic
analyses of the spiral dielectric were extremely sensitive to +
the dielectric of the external field region, ep. The use of
a mean dielectric by volume yielded the best results. However, b
small changes resulted in large changes in the computed ;

propagation constants. Numerical results were compared to
experimental results listed in the Northrop final technical report

on the composite metal-ceramic helix.'l The aimulated phase

velocity for Helix No. 2 at 6 GHz was eighty percent of the
measurement.
50
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To give more freedom to the external trial fields, the
continuity constraint at the tape was removed. This quadrupled
both the size of the variational matrix as well as the number
of numerical integrations required. This analysis was also
extremely sensitive to the value of the dielectric used for the
external trial field region. Best results were obtained for
Helix No. 2 using an average dielectric for the external trial
field region. Phase velocity was within about 15 percent of
measured values for frequencies of 6 and 10 GHz. Results for

Helix No. 4, which had a large gap-to-pitch ratio,were not nearly
as good.

B. Three Region Problems

Because the two region analysis of the metal-ceramic helix
was so sensitive to the trial-field dielectric, a three-region
model was developed in which an additional set of TE and TM
trial fields using the dielectric of the ceramic were placed
over the spiraling-dielectric support. This meant that a
In¥ pust be’
combined. The variational matrix takes on a size of 6N x 6N.
Because the radial tape thickness can be as much as 50 percent

of the tape-to-shield distance, the effective volume occupied by

total of six fields with harmonic dependence e

the dielectric was changed by the thin tape assumption. Therefore,

a radially thick tape was modeled as shown in Figure'6. This
required additional numerical integrations over the radial sides
of the tape, where the tangential electric field was not zero.
In this model, then, geometry is modelled exactly. No average
dielectrics nor dimensions are assumed.

The three-region problem requires numerical integration in
the computation of variational terms at the radial interface of
the external, free-space region and dielectric region. As in
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the two-region problem, these are integrations along the radius.
Applying the symmetry of the reaction integral from Equation
37(1III), the number of numerical integrations can be reduced
from 16 per harmonic to 4. Counting the numerical integration
along the sides of the tape,a total of 8 - g- @ + g numerical
integrations are needed in combining all fields within N

trial field harmonics. An eight point Gaussian-quadratic
scheme was employed so that the field components could be

computed and stored at fixed samples along the radius and combined
into one of the many integrands when required. CPU time for this

i s ——

analysis is still considerable. Figure 18 shows the CPU time
needed to make all calculations as a function of the number of
trial fields combined when executed on the Harris 550. The time
increases exponentially with the number of trial field harmonics.

At a frequency of 10 GHz on Northrop's ceramic Helix No.

P Y S . o o

2, convergence of dispersion and line impedance was examined

as a function of the number of trial field harmonics. These
results are shown in Figures 19 and 20. The harmonics combined
were different for the runs summarized by Figure 20 in that
certain harmonics, thought to cause numerical instability because
they had little contribution to the total field, were excluded.
The phase velocity is much more erratic than it had been for the

homogenous support model. Impedance at the line varies even
more, although deleting certain harmonics makes the values

considerably more stable. Numerical comparisons between
adaptive and eight-point Gauss-Quadrature integration indicates
that for a large number of trial field harmonics, the precision

of the Gaussian method in the power flow integration is down

to two or three decimal places. This accounts for the divergence
of impedance. It appears that more samples along the radius

are needed in the numerical integration for better results

at large combinations of harmonics for both impedance and
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dispersion calculations. Figure 21 shows the dispersion for
Helix No. 2 over a large frequency band using 9 and 21
harmonics. As can be seen, the computed results are much better
than Paik and fairly parallel to measured results when 21 modes
were used.

Helix No. 4, which has a large gap-~to-pitch ratio, was
examined at one frequency. Results for phase velocity were again
large compared with measurement. This case is mentioned because
a main motivation in using three regions was a lack of agreement
between measurement and simulation when the two-region

variational analysis was applied to Helix No. 4.

Extensive simulation of structures provided by Hughes
Electron Dynamics Division have also been made. These are
particularly of interest because quantitative data of dispersion
and impedanceras well as qualitative changes when the dimensions
were perturbed,can be seen. Results are presented here with

frequency and geometric parameters normalized.

Figure 22 shows convergence properties for one Hughes
strdcture. The behavior is similar to that of the Northrop
ceramic structure. In Figure 23, results over a wide frequency
band are compared to experiment forll, 19, and 23 harmonics
combined. All combinations give results closer than Paik.

For 23 harmonics, the computed dispersion is extremely close
to the measured results as is shown in Figure 24 using a finer

scale in phase velocity.

Hughes perturbed the axial tape thickness in their structures.
When the gap-to-pitch ratio is increased from .38 to .61, the
dielectric loading of the external media decreases. This has
the effect in both experimental and calculated results of
increasing the phase velocity. Figure 25 shows calculated

and measured responses over an octave of frequency. Although
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simulation at 11 modes showed the increase in dispersion, the
slope differs sharply from the calculated results.

Hughes also perturbed the shield diameter by increasing
and decreasing this dimension by 10 percent. There are two
opposing factors in such an experiment. By increasing the
shield diameter,the phase velocity will tend to rise because
the shield loading becomes close to that of a shieldless
structure. At the same time, the effective dielectric loading
is increased because more dielectric is contained in the
external region. Shield loading is shown to dominate in this
case as indicated in Figure 26. The computed dispersion from
the three region variational analysis seems to be dominated by
dielectric loading because the phase velocity has decreased
with the increasing shield diameter. However, the movement
is so slight that it is well within the present precision of the
variétional technique. It should be noted that predicted phase
velocity remains nearly parallel to the measured dispersion.

‘We also examined other Northrop ceramic coated helices,
though not in as much detail. Results for Helices No. 1 and 3
at three frequencies are shown in Figures 27 and 28 respectively.

C. Numerical Difficulties in Three Region Ceramic-Coated

Helix Problems

By using three trial field regions instead of two,all
actual geometric dimensions and dielectrics couldbe used without
resorting to average or effective dimensions or dielectrics.
At the same time, convergence properties, especially with
regard to impedance, were sacrificed. Moreover, the dimension
of the variation matrix grew rapidly with the number of trial
field harmonics. This led to numerical instability in the
calculation of the determinant of the matrix which was compounded
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by perturbations introduced by imprecision in the numerical
integration scheme for higher order modes.

Having six unknown fields per trial-field harmonic also
introduced spurious solutions to the dispersion in much the
same manner as four independent fields per harmonic affected
the homogeneous support simulation. Our convention was to
pick the smallest Bo. This may have been too arbitrary a
convention.

Multiple solutions exist because in the variational
technique the measure of equivalence of a sum of trial fields
is their reaction with the correct currents in Rumsey's reaction
integral. Two systems may have the same reaction even if they
are not equivalent. Results suggest that introducing a great
amount of freedom by supplying six trial fields per harmonic
can produce several combinations of fields with equivalent
reaction.

In the analysis of the homogeneous external support, two
techniques were shown to remove false solutions to the variational
analysis. Parallel developments have not been made for the
spiralling support, and should be included in future work on
the variational technique. The specific proposals are found in
Section VIII.

Another main numerical instability was the determination of
the singular matrix. The search routine favored situations in
which the sign of the determinant changed. It is easy to miss
singularities throujh which the sign of the determinant did
not change. It is also easy to miss the smallest BO corresponding
to a singular matrix if the sign changed more than once in an
'interval.

The amount of storage required for the three-region-spiral
dielectric computer program (SPIRAL) is much greater than that
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for the homogeneous case. When 13 angular harmonics are

combined, 110K of fast memory are required. As noted
previously, the CPU time used grows exponentially with the
number of harmonics combined (see Figure 18).
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SECTION VII
ERRORS INTRODUCED BY BEVENSEE'S CHOICE

OF THE TRIAL FIELD

The fundamental approximation in the variational analysis
is that the correct field can be written as a sum of cylindrical
harmonics . Errors are introduced by (1) truncation of the
series or (2) an inability to adequately represent the field
with the cylindrical harmonics chosen. Expressing the exact
system C as a sum of a truncated series of cylindrical modes,
denoted by system a plus an error term ep where the fields
of p have norm equal to 1, yvields

c = a+ep . (1)

If an arbitrary sum of modes is given by system b, Equation
31(III) implies that

0 = (oia + ey . (2)

The first term in 2 is just the quadratic form B*M(BO)C
of Equation 25(III), when B and C are column vectors of
coefficients of the cylindrical modes.

Clearly if € = 0, then det[M(8))) = 0. The fields
produced by the sheath current problem fall into this category
because the fields are indeed an exact sum of Bevensee's trial
fields. It should be noted that our computer program gquickly
and correctly found the propagation constant for this case.
Otherwise € should be very small for some optimal combination of
trial field harmonics. The case det(M) = 0, implies that the
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reaction is zero for any b. However, € may be large if the
reaction <b,p*> is zero for any b.

The fundamental assumption is the existence of a combination
of trial fields which make € so small that M(Bo) can be considered
singular. Bevensee's representation of the trial field is
actually a decomposition into spiralling angular harmonics in

terms of TE and TM longitudinal components:

Eg -8 €1nRn (V) . "

= = e J 0 eJnU) , (3) 3

HZ CZnSn(Y) S

where R and Sn are modified Bessel functions, Cln are the :

constants of each of the trial field components and ¥ is an
angle which rotates with the helix. The functions ejnw are a 1
complete basis as are the modified Bessel functions. However, F
Bevensee fixes n=m in order to make each individual trial field |
a solution to Maxwell's equations. It is our contention that

this is too severe a restriction of the trial fields. The

simple product of exponential and Bessel functions is not complete

over the r-y surface. }

The boundary conditions are violated by the trial function
simultaneously across the tape radius and constant angles, VY.
For a given n, Ezn and H,, cannot simultaneously be made continuous.
This means that the continuity of the H-field across the tape
radius and the condition of a zero tangential E-field along the
tape radius must both be satisfied by higher harmonics. Notice
the E-field problem is only along ¥, while the H-field discon-
tinuity is only across a constant radius. In our variational

solutions, many modes are needed primarily because the E-field
problem and H~field problem compete. The following section
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describes a planned modification which should allow continuity
of the H-field and decrease the number of harmonics needed,

thereby making the variational technique much more economical.
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SECTION VIII

SUGGESTIONS FOR FUTURE WORK

A. Alternate Trial Fields

Additional terms should be added to the Bevensee's set
of trial fields so that the collection is complete. Specifically

express the longitudinal fields in each trial region as

the sum in n and m of functions

n=0 mn=0

where R, S, Bn, ¥ are described in Section III. For (n=m),
both E, and H, satisfy Maxwell's equation. This is the subset
Bevensee used because only surface integrals remain in the
variational formula for simple problems.

When n#m, volume integrals arise in Bevensee's formula.
Equivalently, in Rumsey's reaction integral, volume magnetic
and electric currents are added to the trial fields so that
Maxwell's are satisfied.lo These must be integrated over the

volume of the structure.

The trial fields of Equation 1 have sufficient freedom to
satisfy both E-field and H-field mismatches simultaneously.
Also, minor modifications of the program architecture will
be needed. In this way, it 1s anticipated that fewer angular
harmonics will be needed 1n the approximate field because at a
given angular harmonlc, continulty of the longitudinal component
of the E~field at the tape will not create a discontinuity in the

H-f1leld.
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Because nearly correct boundary values in both E and H fields
; are possible with an optimal combination of trial fields, the
! number of spurious solutions should diminish too.

f B. Reduction of Trial Field Harmonics by Point Matching

The existence of multiple solutions to the propagation
\ constant for the homogeneous dielectric support problem
. was reduced by adding constraints from the continuity of the
E~field across the tape radius. This reduced the number of
_ unknown coefficients. These constraints do not exist for each
! ; harmonic for the spiral dielectric problem. However, continuity
i can be enforced at selected points along a particular interface
i on the total field. The number of independent trial field
coefficients will then be reduced by four at each point where

all boundary conditions are enforced.

v ey

1
s s

This method is similar to point matchingyl4wherein sums
of modes are placed in different sections of a structure and
then matched along the interface of the partitions. Point
matching typically uses all the unknown field coefficients
to generate a matrix singularity at the propagation constant.

It is usually successfully used when the structure has a large
15

amount of symmetry.

In the method proposed here, the variational expression
would still be used, but the total trial field would be con-
strained at certain points. Results should be superior to those of

e —————— ————_ . s omar

of pure point matching because a solution to the variational
expression has the co .ect reaction. Also, the interfaces
are much more drastic than commonly encountered with point

matching.
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C. Use of Other Variational Expressions on the Spiral Dielectric

Results for the homogeneous dielectric drastically improved
when an additional variational term was placed over the free-
space region. Characterization of this term as weighing the free-
space portion of the problem more heavily was made. No attempt
has been made to add similar terms in the spiral dielectric

simulation because additional numerical integrations would ke
required. Nevertheless, 1t 1s likely that the occurence of multiple

solutions could be minimized by this technique on the spiral
dielectric.

Matitabie
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SECTION IX

CONCLUSIONS

Harris SAI has developed a variational analysis of several
helical slow-wave structures. The formula of Bevensee was
used. This was shown to be a measure of the reaction of the
approximate field with the correct currents as defined by
Rumsey. Through this reaction concept, effects of using an
approximate sum of trial fields were derived.

The variational analysis of the sheath helix gives the
exact phase velocity and trial function coefficients. When
the variational analysis is applied to the homogeneous dielectric
support,multiple solutions to the phase velocity appear. These
are eliminated by either adding a variational term to Bevensee's
formula or else reducing the number of unknown trial coefficients
by applying constraints at the interface of trial regions.
Results of phase velocity and impedance are extremely close to
those found by a Paik analysis when the gap-to-pitch ratio is

small.

The variational analysis was also applied to a spiraling
dielectric support. If two trial regions were used, the results
were too sensitive to the dielectric of the external trial
region. A three-region analysis with thick tape was developed
so that the complete geometry and all dielectrics were included
in the model. Results were compared to cold-test data supplied
by Northrop and Hughes. Multiple solutions again appeared.

The lowest solution for BO changed greatly with different
combinations of modes, as did the impedance. Nevertheless,
there were combinations of trial function harmonics for which
excellent agreement between simulation and experiment over a

wide frequency range was observed.

.
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The results suggest that more work should be done on the
modeling of the spiral dielectric support. As described in
Section VIII, it is suggested that a new set of trial fields and
continuity constraints to minimize the occurrence of multiple
Bo‘s be accomplished. Considerable improvement in the accuracy

and economy of the variational model is expected, A viable

solution to the spiral dielectric support can be extended
quickly to cases using alternative support structures.
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APPENDIX A

Data for a Northrop Corp. Metal-Ceramic Tape Helix

Manufacturer:

Northrop Corporation Defense Systems Division
175 W. Oakton Street
Des Plaines, IL 60018

T =t o o .~ S N - £~

Helix Identification Number: 1, 2, 3, and 4

Date Supplied To: Dr. Donald M. MacGregor
Harris SAI, Inc.
611 Church Street
Ann Arbor, MI 48104
313/761-8612

R o s e s e e U e T AW

A. For the helix and shield:

g 1. Material of tape: Copper
2. Electrical conductivity: 5.8 x 107 mho/meter
3. Material of shield: Aluminum

4. Electrical conductivity: 3.5 x lO7 mho/meter

5. Inner radius of helix tape: (1)2.501, (2)0.9906,(3)1.35,
(4)1.35 mm

6. Outer radius of helix tape: 2.769, 1.232,1.61,1.61 mm

7. Radius of conducting shield: 3.81, 1.613, 2.30, 2.30 mm

8. Pitch of helix tape: 2.489, 0.7874, 1.09, 2.27 mm

9. Width of the tape on the cylindrical surface, as
measured at right angles to the spiral edge of the tape:

1.245, 0.51, 0.51, 0.51

B. For the dielectric support:

1. Material: Beryllium Oxide

! 2. Isotropic or anisotropic dielectric: Isotropic

3. Dielectric constants along principal axes: 6.7

4, Dielectric constant in radial direction:

5. Dielectric constant in angular direction:
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Frequency Range

l., Low end of band: 2.0, 3.0, 1.4, 1.4 GHz

2. High end of band: 5.5, 12.0, 8.0, 8.0 GHz

Additional Information

The dielectric constant of beryllium oxide was supplied

by Mr. Glenn Rees of Brush-Wellman, Inc., Elmore, Ohio.

The remaining numbers are taken from Northrop Technical

Report AFAL-TR-77-206, p. 34..1
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MISSION
of
Rame Air Development Center

‘ RADC plans and executes aumch development, test and

selected acquisition programs in Auppolbt of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering suppont within areas of technical competence
48 provided to ESD Program Offices (P0s) and other ESD
elements. The prineipal mission arneas are
communications, electromagnetic guidance and control, sur-
velllance o4 und and aerospace obfects, ence data
collection handling, infoamation system technology, ‘
ionospheric propagation, solid state sciences, uma::ze
maintainability

physics and electronic reliability,
compatibility.







